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A new singular boundary-integral equation of the second kind is presented for the 
stresses on a rigid particle in motion in Stokes flow. The integral equation is 
particularly suitable for the mobility problem -when the forces and moments on the 
particle are given. A generalized Faxen law is also presented. The power of the 
method is demonstrated by easily reproducing known results as well as new ones, 
both analytically and numerically, in infinite medium as well as in confined regions. 

1. Introduction 
Motion of small particles in an incompressible viscous fluid occurs in many areas 

of engineering, e.g. sedimentation problems, lubrication processes, locomotion of 
flagella, etc. All these motions are characterized by low Reynolds numbers and are 
described by the solution of the Stokes equations. 

Usually, the solutions of the Stokes flows are very specific, i.e. one solves for a 
specific shape of body in a given flow regime, and considerable efforts are invested in 
studying each new case (Ganatos, Weinbaum & Pfeffer 1 9 8 0 ~ ;  Ganatos, Pfeffer & 
Weinbaum 1980b). One way around this difficulty is to apply the singularity 
method : singular forces are distributed on the axis of the body or on its surface and 
the velocity that they induce is equated to the given velocity, thus yielding an 
integral equation for the singularity strengths. For simple cases like slender bodies 
(Johnson & Wu 1979; Liron & Mochon 1976; Liron 1978, 1984; Barta & Liron 
1988a, b )  or for an ellipsoid of revolution (Chwang 1975; Chwang & Wu 1974, 
1975) where a distribution of forces along the axis is sufficient to describe the 
complete motion, general rules were derived. The types of singularities that have to 
be used, as well as the ratio between their strengths, is known. However, most cases 
require distribution of forces on the surface of the body and, although the 
formulation of the integral equations that describe the flow has been known for many 
years (Ladyzhenskaya 1963), until recently no constructive and efficient way of 
solution was found. The reason for this is that Ladyzhenskaya formulated the 
solution in terms of eigenfunctions but gave no clue as to how to determine these 
eigenfunctions. Others have tried to handle the problem without the eigenfunctions 
but this implies solution of Fredholm equations of the first kind, which is known to 
be an ill-posed problem. Nevertheless, people have solved such problems, starting 
with Youngren & Acrivos (1975), and recently Hsu & Ganatos (1989), and also Tran- 
Cong & Phan-Thien (1989). A much more extensive review of previous work may be 
found in the Introduction to Hsu & Ganatos’ recent paper. 

There have been many papers on particle movement in Stokes flow. For an 
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extensive review of numerical methods in Stokes flow, the reader is referred to the 
recent survey by Weinbaum, Ganatos & Yan (1990), and to the paper on integral 
equations of the second kind for Stokes flow by Karrila & Kim (1989). Their work is 
not covered in Weinbaum et al. 

The search for an integral equation of the second kind was first successful when 
Power & Miranda (1987) gave such a representation for the case of ‘resistance’ 
problems, i.e. when the velocity of the particle is known, and the forces and moments 
are to be found. Power & Miranda represented the velocity as a double-layer integral, 
to which they added a Stokeslet and a Rotlet, both located at  the centre of the body. 
Equating the representation to the given velocity resulted in a Fredholm integral 
equation of the second kind in the double-layer density, and a numerical solution 
became possible after relating the Stokeslet and Rotlet strengths (force and moment) 
to the unknown double-layer density. Karrila & Kim (1989) and Karrila, Fuentes & 
Kim (1989) showed the completion of the double-layer representation by Power & 
Miranda to be one of many possible completions. They suggested the same 
representation for the velocity as did Power & Miranda, and discuss various 
completions, suggesting one which is advantageous to an iterative numerical process 
for multiparticle systems. Both these completions are successful because, as observed 
by Power & Miranda, and previously by Ladyzhenskaya (1963), the double-layer 
representation alone is able to represent flow fields that correspond to the total force 
and total moment equal to zero. The Karrila & Kim approach yields a Fredholm 
integral equation of the second kind, both for the resistance problem and for the 
‘mobility problem’ (when the force and moment are given for the body or bodies). 
We suggest here a different approach. We represent the velocity as a single layer 
potential, and derive a Fredholm integral equation of the second kind where the 
density function is the stress on the surface itself. This approach is particularly useful 
for the mobility problem. 

In $2 we derive the new integral equations both in infinite and in confined regions. 
Section 3 presents the generalized Faxen law, which may be used if the motion of the 
particle is our only interest. In 54 we demonstrate the strength of the equation in 
obtaining analytic results, both well known as well as new. In 55 we demonstrate the 
power of the method numerically, by easily reproducing a variety of solutions 
previously worked out. A discussion concludes the paper. 

2. Integral equation 

forces in Stokes flow. The equations of flow are the Stokes equations 
We want to solve the problem of a rigid body or bodies S, moving under external 

v p  = pv2u, (2.1) 

v - u  = 0 (2.2 1 
for the velocity and pressure in the medium. 

Define the stress exerted by the body on the fluid as 

f= a(u)-n, (2.3) 

where a(u) is the stress tensor due to the flow (u, p )  and n is the inward normal. Then, 
the total force F, and the total moment M on each body is given, and 

F = j  fa, 
a s  
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M = S,, r x f a .  

58 1 

(2.5) 

On all other boundaries, the velocity is given. 

2.1. lnJinite medium 
We first deal with the case of infinite medium. 

velocity u. Let 
Assume a given Stokes flow (ti, p) into which the body is inserted, inducing a 

be the well-known Stokeslet in infinite medium. Then the solution to (2.1), (2.2) can 
be written as 

f Z ( x )  tZk(x ,  y )  @,, k = 2, 3, (2.7) 

,. 

where f is the stress due to the resultant field ( u , p )  (and not the perturbed field). 
While the above representation is well known for the case ii = 0 it is not clear to 

us how well known it is for (a, p) not vanishing. Howells (1974) indicates knowledge 
of such a representation when dealing with the more general Brinkman’s equation. 
Caflisch & Rubinstein (1986) also assumed this relation in treating FaxBn’s law. A 
representation close to a proof was given by Rallison & Acrivos (1978). They proved 
that they could write ulc (y) as in (2.7) but with an additional term due to the stress 
of the Stokeslets, i.e.t 

,. n 

uk@) = %b’) + J fZ(X) tZk(x,y) a x -  uj(X)nt(x) aij(t.r(x,Y)) @x* (2.9) 
as Jas 

From this it is easily shown that this additional term vanishes for rigid body motions, 
resulting in (2.7). 

Durlofsky & Brady (1989) also write (2.9) and deduce (2.7) (p. 44, equation (2.7e)). 
They attribute (2.9) to Ladyzhenskaya, but she only treats the case a = 0 in her 
book. Kim (1985) also derives (2.7) for the case that the particle is stationary, and 
finally gives a complete proof in his new book, Kim & Karrila (1991). 

The above representation holds for all y ,  both outside and inside the body. 
Using (2.7), (2.8), one obtains 

where 0, 8 are the stress tensors of the fields (u ,p) ,    ti,^), respectively. 
Letting y approach the boundary along a normal to the boundary, multiplying by 

t We are indebted to a referee for pointing this out to us. 
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the inward normal and using the ‘jump condition’, as in Ladyzhenskaya (1963), one 
obtains the singular integral equation 

(2.11) 

since the jump condition adds gi ( y )  to the integral. 
An alternative form of this equation is 

(2.12) 

Equation (2.11) or (2.12) is a singular, non-homogeneous integral equation of the 
second kind, for the stresses exerted by the body on the fluid. The homogeneous 
equation is exactly the adjoint equation for the exterior problem, discussed by 
Ladyzhenskaya (1963, Chapter 3, equation (38)). Ladyzhenskaya proved that the 
homogeneous equation (2.11) has exactly six linearly independent solutions. It 
follows, therefore, that (2.11) or (2.12), together with the six additional conditions on 
the total force and total moment, equations (2.4), (2.5), uniquely determine the 
solution. (This is not, however, Ladyzhenskaya’s second boundary-value problem, in 
which the stress on the body’s surface is given.) A solution to (2.11) exists if and only 
i f f is  orthogonal to the homogeneous solutions of its adjoint equation. But (see 
Ladyzhenskaya), these are c p k ,  k = 1,  . . . ,6 ,  which are the three translations and three 
rotations. Thus 

J a , q P = O ,  k =  1,2  ,..., 6, 

since this yields the three components of the force and torque exerted by the field ii 
on S, and these are zero since ti is regular in S. Once this system is solved, the 
velocity at  every point may be evaluated using (2.7). 

Equations (2.11) or (2.12) are integral equations with a weak singularity. This may 
be seen, as suggested by Power & Miranda (1987), as follows. Define, as in 
Ladyzhenskaya (1963), 

then 

But 

r = x - y ,  r = Irl, i,j = 1,2 ,3 ,  

where i2 is the solid angle. Thus, with an appropriate change of variables, the 
integrand in (2.12) vanishes for y = x. 

Power & Miranda went. on to conclude that in a numerical solution they may set 
the integrand equal to zero, for y = x. This is incorrect unless the above 
transformation (change of variables) is first performed, see also $5. 

2.2. Non-infinite medium 

For the case where boundaries exist, a similar equation to (2.11) holds. Let ii be the 
non-perturbed flow, which satisfies the boundary conditions (adherence to walls). 
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Define the Green’s functions : 

q k  = t t k  + 7 t k ,  P k  = pk + nk7 (2.13) 

where t ik ,pk are defined in (2.6), and 7 t k , T k ,  k = 1,2,3 are regular solutions of (2.1), 
(2.2), such that !& = 0,  i, k = 1,2,3 on the boundaries. Then, a representation of the 
final velocity u, after inserting the body S, can be given similar to (2.7), (2.8) : 

i, k ,  = 1,2, 3, 

k = 1,2,3, (2.14) I uk&) = ‘k&) + 1 f l ( x )  q k ( x ,  Y)dxx? 
as 

P W  =Pcy)+J f i ( x ) m ? Y ) ~ x .  
as 

Proceeding as before one obtains the equation 

This equation is similar to (2.11), except that the kernel has an additional term, 
arising from the additional solution 7 { k ,  nk. These functions, and their derivatives, are 
regular in the region, by definition. Again, this equation, together with conditions 
(2.4), (2.5), uniquely determine the solution. 

Explicit solutions for a Stokeslet T, P are known for the case where the Stokeslet 
is above a plane wall (Blake 1971), outside a sphere (Oseen 1927), between the two 
plane walls (Liron BE Mochon 1976) and inside an infinite straight cylinder (Liron & 
Shahar 1978). 

3. The general Faxth law 
If one is interested only in the velocity of the solid particle and not in the resultant 

flow fields, general Faxen laws may be derived. We present here their full derivation 
since the laws are intrinsically connected with preknowledge of the solutions to (2.1 1) 
or (2.15). The derivation here follows lines similar to Brenner (1964,1966). 

Suppose we have a regular Stokes flow field il, satisfying given boundary 
conditions. Insert a rigid particle X, such that the final velocity is u. Then on the 
particle 

where V,  are fixed vectors, and u - il+ 0, when r +. m and on all other boundaries. 
Define a Zeg i t ima te$eZd  u , p ,  as a flow field solving the Stokes’ equations (2.1), (2.2), 

regular outside the particle S, and vanishing on all other boundaries (including 
infinity). 

Take any legitimate field u, and apply Green’s theorem to the domain exterior to 
S. This yields 

u =  v+nxr (3.1) 

U = f ( U - i l ) d s  = (u-n)=f(u)ds,  (3.2) f,, I s  

wherefis the stress on the boundary. Inserting (3.1) into (3.2) one obtains, 

( V + n x r - i l ) . f l u ) d s  
Jas 

= v.F(u)+n.M(u)-  i l . f l U ) d x ,  I, (3.3) 
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where F, M are the total force and total moment respectively, acting on the particle, 
as defined in (2.4), (2.5). 

Define six legitimate fields 3, j = 1, . . . , 6  by demanding the additional conditions : 

3(&S) = d ,  d+3(aS) = C X ~ ,  j = 1,2,3, (3.4) 

in other words the flow fields due to the three translations and three rotations of the 
body. Then, inserting (3.4) into (3.3), one obtains 

I f ( ~ ) - f l ~ ) ] d S  = Fj(u) = V.F(d)+rlz-M(d)- U = f ( d ) d S ,  j= 1,2,3,  J as 
(3.5) 

and similarly, 

since the total force and total moment exerted by the field u, regular in S ,  is zero. 
The above equations are six equations for the six unknowns V and rlz, if F and M 

are known, or vice versa, and can be solved uniquely once the six basic flow fields 3, 
j = 1, ..., 6 and the resultant total forces and moments are computed. Equations 
(3.5)-(3.6) are the general Faxen law. These equations are equivalent to (6.9), (6.11) 
of Brenner (1964), or (46) of Brenner (1966), when dealing with infinite medium (no 
boundaries). Brenner (1966) also addresses the case of bounded or semi-bounded 
domains, pointing out the necessary modifications. His approach is equivalent to the 
use of the Green’s function (2.13) for the appropriate region (see also Karrila & Kim 
1989). The difference between this presentation and those of Brenner, is that Brenner 
did not have equation (2.11) to computefld), j = 1, ..., 6, independently. He used 
expressions which amount to an expansion of u in a Taylor series around the origin, 
and use of translational and rotational triadic ‘stress’ fields 17t and nZ (see e.g. 
Brenner & Haber 1983). Knowledge of these triadic fields is equivalent to knowledge 
of the six flow fields 3, j = 1, ..., 6. 

For a particle in infinite medium, Kim (1985) and Kim & Karrila (1991), also 
bypass the difficulty of evaluating the integrals in ( 3 4 ,  (3.6), by making what 
amounts to the following observation : the integral in (3.5) has the same functional 
form as equation (2.7) for the flow fields d ,  with ii replacing the Stokeslets on the 
boundary, 

Thus, if we take V = sd = 0 (a stationary particle), the force Fj  acting on it can be 
obtained by applying the same linear operator to u as used to obtain 3 from the 
Stokeslets. In general, if 

where t is the Stokeslet given in equation (2.6), 9 is a linear functional, and x the 
region over which the Stokeslets are distributed, then 

d(Y) = & . m t ( Y  --X)}> 

F3 = d.F{tZ(x)}. 

This may be used to advantage if equivalent simpler expressions for 9 are known, 
as they demonstrate. A similar argument applies for the expression for the moments. 

When looking at the force acting on a moving particle, (3.5), (3.6) give the correct 
way to add the additional contributions. 
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Notice that the above arguments hold for bounded regions as well, replacing t by 
T, see (2.13), (2.14). 

The above approach requires solving for the three translations and three rotations, 
that is, solving the resistance problem (prescribed velocities on the boundary). This 
can be done by first using the Power & Miranda (1987) technique, then using their 
expressions for the velocity and pressure, computing the stresses on this boundary, 
which can then be used in (3.5), (3.6). 

Alternatively, one may choose to obtain six independent basic flows by prescribing 
the total forces and moments on the body, and solve the homogeneous equation 
(2.15), thus obtaining the stresses on the boundary directly. 

Explicitly, define six legitimate fields u', such that 

To obtain the Faxen laws using I((, we proceed as follows. Solving (2.15) for these six 
flow fields we compute u' on as using (2.14) with is = 0. Since 

u*= V + + * x r ,  i = l ,  ..., 6, (3.8) 

~ = U , , ~ U * ,  j= 1 ,..., 6, (3.9) 

we obtain V ,  + I ,  i = 1, ..., 6. As these six fields are linearly independent, we may 
write 

with the Einstein summation convention, as before. To solve for u , , ~  the following 
linear system of equations is to be solved for each j : 

In terms of ui, the equations for the velocity V and spin f 2  of the rigid body S then 
take the form: 

j = 1,2,3.  (3.11) I a j , Z K + a j , 2 + 3 Q 2  = F j ( u ) + [  a Z a j , I f Z ( u ' ) d s I  
as 

a3+3. 1 & +a,l+3. l+3 '2 = M j ( u )  + I ' 1  aj+3. I f l ( u i )  ds, 
as 

Equations (3.11) are equivalent to (3.5), (3.6) relating the velocity and spin to the 
forces acting on the body. The classical Faxen laws follow immediately from the 
above results (see 54.1). Thus, once six basic flows are computed, d or 3, j = 1,  ..., 
6, the general Faxen laws can be used either for the problem of the first kind (the 
resistance problem), or the second kind (the mobility problem). Again, it  should be 
emphasized that if one is interested in the resultant flow field and pressure field, one 
has to go back and solve the full equations (2.4), (2.5), (2.15). 

An interesting point to note is the following. From a mathematical point of view, 
the resistance problem, for which velocities are given on the boundary, is well posed. 
On the other hand, replacing direct boundary conditions by indirect conditions - 
integrals over the boundary of derivatives of the solution-as in the mobility 
problem, raises the question of well posedness and uniqueness of the solutions. 
Physically, we expect these conditions to suffice. The existence of (2.1 1) or (2.15), 
with six independent homogeneous solutions, answers this problem in the affirmative. 
Once these are known, Faxen's laws (3.5), (3.6) (or (3.11)), show the equivalence of 
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prescribing the velocity on the boundary (which for rigid-body motion means 
prescribing V and n), and prescribing the total force I; and total moment M. It also 
follows, therefore, that  this is true for rigid-body motions only. FaxBn’s laws are, 
therefore, an intrinsic property of the equations, justifying the uniqueness and well 
posedness of the mobility problem. 

4. Exact solutions 
We shall show here how several known results, as well as new ones, follow directly 

from (2.7), (2.11) and the general FaxBn law. For symmetric bodies moving along (or 
rotating around) one of their axes of symmetry, it was found (Happel & Brenner 1973) 
that the only non-zero drag (or moment) is in the direction of motion. Thus, (3.5), 
(3.6) can be separated into components. 

As was shown in $3, we need six independent solutions of the homogeneous part of 
(2.11) or (2.12). 

4.1.1. Translatory motion 

that  these are solutions of equation (2.11), provided 

4.1. A Sphere in injnite medium (of radius a )  

For translation in the x, direction, m = 1,2,3,  take f i ( x )  = fal,. It follows then 

which is easily confirmed. Thus,fis constant and has a component in the direction 
of motion only, so that f = F/47ca2. Inserting this into (2.7), evaluating at the origin 
(which is permissible since (2.7) holds inside the body as well), we have, 

which is Stokes’ law (evaluation of the integral being trivial). 

F = 6xpa(u = 1). Then, 
To obtain FaxBn’s first law for a sphere, take (3.5) for the above case with 

But 

6xpa 
F,(u) = Vm67tpa- 

1 a2 

6 
47ca2 6, a, ds = a,(O) + - V2 aJ0) 

(see Brenner 1964; Caflisch & Rubinstein 1986), and FaxBn’s first law results. 

4.1.2. Rotation 
For a sphere rotating around a given axis, the equations again separate. For 

rotation around the y3 axis (coordinates measured from the centre of the sphere), for 
example, one easily confirms that if 

(4.1) 
311 flv) = a ( -Y2 ,  Y 1 , O )  Q, 

then for the moment, N, = 8xpa394,, and, using (2.7) on the surface of the sphere, 

u = Q( -y2, y l ,  0) = Qe, x I, (4.2) 
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with similar results for the other directions. Now, using (3.6), one obtains 
n 

and a simple calculation yields 

M, = 8npa352,-4npa3(V x a(O)),, (4.3) 
which is PaxBn’s second law. 

We see that the solution for a sphere is particularly appealing. To obtain a 
constant velocity we distribute constant stress, and to obtain rotation ( e 3 x r )  we 
distribute ‘rotation ’. 

4.2. Motion of an  ellipsoid 
The general case of an ellipsoid translating in a quiescent fluid was solved by 
Oberbeck (Lamb 1945, p. 604), see below. The case of a rotating ellipsoid was first 
solved by Edwardes (1892), using ellipsoidal harmonics. Later Jeffrey (1922) treated 
motion of ellipsoids in uniform shear flow. Brenner (1964, 1966) treated this problem 
again when dealing with Faxen laws (see also Happel & Brenner 1973), and again in 
Brenner & Condiff (1974), and in Brenner & Haber (1983). 

The motion of a spheroid of revolution has also received extensive treatment in the 
literature. Chwang & Wu (1974) treated the case of rotation around the major axis 
by distributing Rotlets on the axis between the foci (with a parabolic distribution of 
strengths). Later, Chwang & Wu (1975) treated translatory motion and rotation 
around the minor axis. Chwang (1975) solved for a prolate spheroid for several 
external flow fields, eventually enabling him to evaluate the velocity and spin of the 
spheroid, at arbitrary orientation and position, in a paraboloid flow. 

The detailed solutions of Oberbeck and Edwardes were utilized by Brenner (1966) 
to obtain a symbolic operator expression for the Faxen law. Brenner & Haber (1983) 
show in the case treated by Chwang (1975) (quadratic flows) that the symbolic 
operator method of Brenner truncates from an infinite series to finite (simple) 
expressions, from which Chwang’s results ‘follow at once ’. Chwang’s results are easy 
to reproduce by our method as well once the six independent solutions for the 
homogeneous equations (2.11) or (2.12) are known. 

Kim (1985) and Kim & Karrila (1991) use the form of the Faxen law that they 
developed to deal with spheroids, utilizing the Chwang & Wu (1975) solutions. 

4.2.1. Spheroid of revolution - translatory motion 
Consider a prolate spheroid defined by 

For any two points x , y  on the surface of the spheroid, we have 

where r is the radius vector connecting points x and y .  Using the above relation, one 
easily obtains that the homogeneous solution of (2.1 1) is 

(4.5) 
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where F is the total force. To obtain the relation between the force F5 and the 
translatory velocity ui, use (2.7). A convenient point at which to calculate is the 
origin, which results in a couple of simple integrals and the result is 

l - e  

u1= -- 16np ae3 

as obtained by Chwang & Wu (1975), after some lengthy calculations. 

4.2.2. Spheroid of revolution - rotation 

to (2.11) ($= 0) is, 

which can be checked directly by substitution into (2.11) and computing the 
necessary integrals. f? is related to M5 via 

For the three rotations we obtain, similarly to the previous case, that the solution 

f l y )  =j7(a2-e2y?)-ie5 x r ,  (4.7) 

Oh the surface of the spheroid the velocity is 

where 
u = $2, e5 x r ,  (4.9) 

] 851 2e-(i-ee2)In- 
l + e  

j- 32 pxab2 e3 l - e  

] (4, + 43). (4.10) 
l + e  - 2e + ( 1  - e2) ln- 
l - e  

3 +- 
32 xpa(a2 + b2) e3 

The above results follow from (2.4), (2.5), (2.7). 

4.2.3. A spheroid in a parabolic Jlow 
Chwang (1975) solved the problem of a spheroid in free motion in a parabolic flow, 

u = (q2 + p )  eg, (see figure 1)  a t  an arbitrary location and orientation with respect to 
the impinging flow. Since the impinging flow has a non-zero component in the 
&direction only, i t  follows from symmetry considerations that the only component 
of velocity of the ellipsoidal centre is also in the direction of 6. 

Insert this result into (3.5), adding the condition F,(u) = 0, for free motion, to 
obtain 

(4.11) 

where vt is the basic flow field for translation in the 6-direction. From (4.5) F, (oE)  is 
related toflog) via 

fE ( ot) = Ft( uc)/4nab( 1 - e2x2)i. 

Substituting this into (4.11) we obtain 
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FIQURE 1. A spheroid at an arbitrary orientation with respect to the direction of flow. 

Using ellipsoidal coordinates we end up with a simple integral, to obtain 

a2 

3 
V,  = ha+-(2-e2-e2cos28), 

as in Chwang (1975). 
In a similar manner, use (3.6) to obtain 

where, by (4.8), 

yielding a definite integral for 8,. This again turns out to be a simple integral, in 
ellipsoidal coordinates, and results in 

8, = 2h( 1 - e2 cos2 8)/(2 -e2), 
as in Chwang (1975). 

4.2.4. Translation of a general ellipsoid 
Let the ellipsoid be 

x: x: 52 
#(Xi, z2, x3) = T+?+< = 1. 

ai a2 aa 
(4.12) 

The Oberbeck solution is expressed in terms of derivatives of the integrals: 

x = a,a2a3JA'* 4 s )  ' 

where A ( s )  = [(a: + s) (a: + s) (a: +s)$, and A is the positive root of the cubic equation 
(in s) g(xl, z2, x3, s) = 0. We shall give a different representation. 
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Let D ( x )  = IV$(x)l, then for any two points x , y  on the ellipsoid we have 

(4.13) 

(see Ladyzhenskaya 1963), so (4.13) satisfies (2.11). By (2.7) we therefore have the 
solution as 

U d Y )  = f : ~ ~ ~ t l ~ ( x , y ) / D ( x ) ~ x ,  (4.14) 

and for any point y on the boundary, the only contribution to U, comes from the 
k - k  component of t lk ,  

J a s  
The total force is 

(4.15) 

(4.16) 

For the relation between the total force and the translation velocity, see also Happel 
& Brenner (1973), or Kim & Karrila (1991). 

4.2.5. Rotation of a general ellipsoid 

rotations is 
In  a straightforward manner one may check that the solution for the three 

Ax) = f,*O-'(x) e5 x r,  (4.17) 

and, using (2.7), we have an explicit expression in terms of a finite surface integral, 
for the solution in this case. Expressions for the relation between f:, the moments 
and the rotational velocity, are straightforward using (2.5) but not explicit 
(expressed as finite integrals). Alternative expressions for the relation between the 
moment and the rotational velocity may be deduced from Brenner (1964) or Kim & 
Karrila (1991). 

5. Numerical solutions 
In  this section we will demonstrate several numerical solutions, both for rigid 

bodies in infinite medium and for bodies near boundaries, and compare results with 
known solutions. We use a simple numerical scheme to solve the singular equation. 
This scheme, though not highly accurate, suffices to demonstrate the power of (2.11) 
or (2.12). We first present results for a slender torus in symmetric motion, where the 
first stages of the solution are analytic. We then present the solution scheme and 
compute motions of ellipsoids and tori in infinite medium. To demonstrate 
applications of (2.15) we solve for a sphere falling onto a plane boundary, which was 
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FIGURE 2. A torus with its system of coordinates. 

solved originally by Brenner (1961). For a more complicated case we solve for a 
sphere falling towards one wall between parallel plane walls. This problem was the 
subject of the paper by Ganatos et al. (1980~). 

5.1. Semi-numerical solutions : torus 
5.1.1. Torus translating along an axis of symmetry 

Consider a torus with axes a, b (see figure 2 ) ,  moving along the z-axis. Symmetry 
considerations imply the following form for the stress function, given in body 
coordinates : 

Because of symmetry, one can integrate analytically in the &direction obtaining a 
pair of equations for the coefficients f, g in (5.1), 

f ( e ,  $1 = (9($) COB 8, A$.) sin t 9 9 . W ) ) .  (5.1) 

3b * (sin $l -sin $) (a  + b cos $)a 
'(") = n(2(a+ b cos $l))i 1 (1 - cos ($1 - $)) (2 +a)+ 

x { f($) (sin $1 - sin $) S-g($)[(cos $ - cos $1 - b,4  S + P I )  d$, ( 5 . 2 ~ )  

U 
b2 cos Sly-;a)F(;n, 6)- ( 2 + a )  cos$-,E(;n, S )  

( 5 . 2 ~ )  

a 
3b(2+a)  

[4(1+a)E(~~,6)-~(~nl.,6)]. s = E ( @ ,  8) cos $l + J 
Here, E and F denote the usual elliptic integrals. The equations are now regular, with 
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the values at $ = qk1 of the integrand in ( 5 . 2 ~ )  and (5.2 b) being A cos $1, -A  sin $1, 

respectively. Here 

A = [2(a + b cos $,)I+ cos + - (f($J cos $1 -g($J sin 11.J. ( 3 
Since the equations are now regular, it is a trivial matter to solve them 

numerically. Using (2.7), one can obtain a relation between the total force F and the 
velocity U :  

where 6 is defined in ( 5 . 2 ~ ) .  

(b Q a)  obtained by Johnson & Wu (1979), 
It is interesting to compare this result with the expression for a slender torus 

As bla decreases from 0.2 to 0.05, the agreement goes up from 97.4 to 99.5%. 

5.1.2. Torus rotating around an axis of symmetry 

shown that the stress has the following functional form: 
Consider the above torus (see figure 2) rotating around the z-axis. Here it can be 

fie, $1 = (-f($) sin 8,f($) case, 01, (5.5) 

and, after integrating through 8, one obtains, 

'("l) = d2n(a + b cos $J2 1 [ ' (a+bcos$)(a+bcos$l) 1 3b 
2 + a  

x {$ ((1 + a)E($,  6) -d(& 4) + ((1 + a)F(in,  6) - (2 +a)E($, 8)) COB $l}j($) d$, 

(5.6) 

where a, 6 are defined in (5.2 c) .  Equation (5.6), together with the specification of the 
moment, 

M = 2nb (a+bcos$)2f(I,h)dI,h, (5.7) r 
is then solved. Some values of the stress coefficient functions f($) for several values 
of the aspect ratio, B = b/a, are shown in figure 3. Again, it is interesting to compare 
this result with Johnson & Wu (1979) for a slender rotating torus. For the 
comparison we compute ug at $ = in, and obtain 

I ug = ~ -Mb [a(a+ b cos9)/(2 +a)${(l+ a)F(+n, 6)- (2+a)E(;n, S) ) j ($ - )  d$, 
0 

a = b2(1-sin$)/[a(a+bcos$)], 6= (1++)-+, 

(5.8) 
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FIGURE 3. Values of the stress function f(@) for several values of E = b/a,  for a rotating torus 

(see (5.6)-( 5.6)). 

whereas Johnson & Wu obtain 

uo = -=(lnT-2). M 8a 
(5.9) 

Comparing the two expressions for several values of the aspect ratio E = b/a shows 
the slender-body approximation to be excellent only for smaller values of E ,  with a 
deviation of 10% at E = 0.2, down to 0.5% at E = 1/60. 

5.2. General numerical procedure 
For a body of arbitrary shape, a numerical method has to be applied to solve (2.4), 
(2.5), (2.15). Owing to the singularity of the integrands a simple algorithm is not 
adaptable here. Power & Miranda (1987) have similar singularities in their integral 
equations. They claim that using an equation such as (2.12) instead of (2.11) leads 
to cancellation of the integrand at the singular point. As pointed out in $2.1, this is 
correct only if one works, for example, with the differential of the solid angle (and not 
with dx, the surface differential, as they in fact, incorrectly, did). One possibility is 
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v = v1 

FIGURE 4. The numerical mesh used for the integral equation (2.15), at the point y = y,. 

to use a Galerkin method (Gavze 1989), but the problem of choosing surface elements 
still remains. We choose to solve the equations by a simple and straightforward 
method. The method is not very accurate, but suffices to demonstrate the appeal of 
(2.15). The surface of the body is partitioned into elements, and the value of the 
integrand a t  each element is represented by its value a t  the centre. This holds 
everywhere except a t  the singular point, where we use a finer partition. The element 
that contains the singularity is partitioned into four sub-elements, as shown in 
figure 4. 

A bi-linear interpolation is used on the stresses in the sub-elements. Thus, for 
example, 

(see figure 4). The numerical method is sensitive to the partition. A partition that 
conserves the symmetry of a problem yields better results. Also, better results are 
obtained if a partition is chosen such that for any two centre points x and y ,  all three 
components of x - y  are similar in size. Using the numerical scheme we checked the 
numerical solution against known solutions : 

A sphere in translatory motion. The solution in this case isf= const. (see $4.1.1). A 
numerical solution with 144 elements gave an error of less than 1%. 64 elements 
yields a solution with less than a 2% error. 

Translatory motion of an  ellipsoid. An analytic solution is available (see $4.2.1). For 
100 elements and aspect ratio of 1 : 2 a maximal error of less than 5 % is achieved for 
f,, the only component of force one should obtain. The other two components of force 
should vanish. We obtain for them max 1 fy ,  f,l = 0.22 compared to a typical value of 
4.0-8.0 for f,. 

For an ellipsoid with aspect ratio of 1 :5, using 144 elements we again obtain an 
error of about 5% for f,, except near the leading edge where the error grows up to 
10%. f, now varies between 1.5 and 7.5, and again maxl fy, f,l = 0.2. 

Motion of a torus. For the two motions in $5.1 above, the results are accurate and 
can be used for comparison. In  both motions, for various aspect ratios, errors did not 
exceed 10% with better accuracy at many points. Exceptional points of lower 
accuracy were seen where the local value off was much smaller than the maximal 
value off. 

5.3. A body moving next to an injnite f i t  plate 
For a body moving next to a plane, (2.15) is used where the Green’s function for a 
Stokeslet above a flat plate is to be used (Blake 1971). 

f l u l )  = &(9flv1) +fly,)  + 3flu2) + 3fly4)) (5.10) 
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h A (Brenner) A (Present) Ratio YO 
1.54 0.01747 0.01740 99.6 
2.35 0.0289 0.02876 99.5 
3.76 0.03755 0.03726 99.2 
6.13 0.0434 0.04302 99.1 

10.068 0.047 15 0.04671 99.1 

TABLE I.  Comparison of Brenner's (1961) results and ours for the force velocity relation (see (5.12)), 
for a unit sphere moving towards a plane at various heights h 

Let r = x - y  = ( x 1 - y 1 , x 2 - y z , x 3 - y 3 ) ,  and let R = ( x 1 - - y 1 , x 2 - y 2 , x 3 + y 3 )  be the 
radius vector from the reflected point (in the plane x3 = 0). The parallel version of 
(2.12) to (2.15) now becomes 

(5.11) 

As an example, consider a unit sphere moving towards a plane wall. Brenner (1961) 
solved this problem, and expressed the relation between the force and velocity as 

F = 6xpUA, (5.12) 

where h was given as an infinite series. From symmetry considerations one easily sees 
that the stress can be expressed as 

f = (47, h) costp, 47, h) sintp,g(g, h) )  = (4% 4,0, g(v, 41, (5.13) 

expressed in Cartesian and cylindrical coordinates, respectively. Here 7, tp are the 
longitudinal and circumferential angles, respectively, and F, is the height of the 
sphere's centre above the plane. A comparison between our results with 64 elements 
and Brenner's results shows excellent agreement, as is shown in table 1.  

5.4. A body moving between two parallel Jlat plates 
As a final example, consider the motion of a body between two parallel flat plates. 
Ganatos et al. ( 1 9 8 0 ~ )  solved for a sphere moving perpendicular to a plane wall. The 
method developed in the paper applies to a sphere only. On the other hand, Liron & 
Mochon (1976) solved for a Stokeslet between parallel plates. Using this solution one 
may apply (2.15) to any body. As a test case we compare results of our computations 
with those of Gantos et al. (1980a) in table 2. Our results show very nice accuracy 
even though, as mentioned in the beginning, we use a rather crude numerical model. 
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A (Ganatos et aZ.)/ h (present)/ 
h H no. of elements no. of elements Error % 

5 50.3 1.2961 16 1.32/91 < 2  
5 10 1.397116 1.423/100 2 
2 4 2.789136 2.868196 < 3  
2 10 2.135136 2.202196 3 
1.5 3 4.781100 4.948196 3.5 

TABLE 2. Comparison of Ganatos et aZ.’s (1980a) results and ours, for the force velocity relation (see 
(5.12)) of a unit sphere moving between, and towards, parallel plane walls at various heights h 
above one plate, and distance H between the plates 

6. Discussion 
We have presented here a singular integral equation of the second kind for the 

stresses on a rigid particle in Stokes flow. The integral equation is the natural one to  
consider, since the total force and total moment, and not velocities, are usually given. 
We have also demonstrated the generality of the method and the relative simplicity 
in the use of the equation, due to the simple representation of the flow field given in 
(2.14). The use of the general Faxen law implies that if one is only interested in the 
motion of the particle, it is sufficient to find six independent solutions of the 
homogeneous equation (2.15), corresponding essentially to the three independent 
translations and rotations. Of course, if we are not dealing with motion in an infinite 
medium, these solutions will depend on the distance and orientation, with respect to  
the boundaries. Thus, it may be necessary to recompute them every time step when 
following the motion of a particle. 

Equation (2.15) is a singular integral equation, but it has a weak singularity. 
Nevertheless a good numerical scheme is desirable to overcome the singularity 
problem. We used a very simple and na‘ive scheme which, for the problems discussed, 
showed surprisingly accurate results. It is clear, however, that the method is not 
sufficiently accurate to properly solve for particles with less symmetry and 
smoothness. 

The method described works for any particle moving next to  boundaries, using 
(2.14) and (2.15). Thus, we have removed the restriction of having a ‘nice’ particle 
in order to obtain a solution. But the Green’s function for the region has to  be known, 
and this is only available for a limited number of regions with ‘nice ’ boundaries, such 
as one plane wall, the region between parallel plane walls, or inside a straight circular 
cylinder. For more general regions, assume that a Green’s function T,, can be used 
which vanishes only on part of the stationary boundary. Then, (2.14) and (2.15) still 
hold, except that now the integral is over the surface of the particle and over the part 
of the boundary where qk does not vanish. This may result in an infinite integral. We 
have not checked such cases, and we do not know if, and for what cases, such an 
approach is feasible. 

Recently, Karrila & Kim (1989) and Karrila et al. (1989) developed an approach 
that also lead to  a Fredholm integral equation of the second kind for the density of 
the double layer. The method they proposed involves the simultaneous solution for 
both the unknown surface density and the translation and spin velocities for the rigid 
body. On the other hand the surface density is non-physical. They have an additional 
constraint (as part of the solution) in that the surface density should be orthogonal 
to the surface densities of the rigid-body motions. Our approach, on the other hand 
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solves for the physical surface density (stresses) directly, and then the forces and 
moments are computed using the general Faxe’n laws, which involves direct 
integration over a surface, and solution of a system of linear equations. For particles 
in infinite medium our kernel is the adjoint of the kernel in the work of Karrila et al. 
As mentioned above, their method requires knowledge of the surface densities of 
rigid-body motions which are solutions of their homogeneous integral equation. 
These solutions are known for arbitrarily shaped bodies, and for multiparticlc 
systems they remain the same (by adding zero density on all other particles, one at 
a time, see Karrila et al., p. 920). Thus, the bulk of the work is in the solution of the 
extended integral equations. In our method, if the surface densities of the rigid-body 
motions were known then, by the generalized Faxe’n laws, one could easily obtain 
velocities given forces and moments, or vice versa. These densities are solutions of 
our homogeneous integral equation, and there are no simple solutions for arbitrarily 
shaped bodies. Thus, the bulk of the work is in finding the homogeneous solutions. 
For regions with boundaries, we utilize the appropriate Green’s function for the 
region, if known, without much additional work. Using the Green’s function for the 
region in the Karrila et al. approach destroys the advantage of the pre-knowledge of 
the rigid-body motion solutions. They are therefore forced to add a double-layer 
density function on the boundary, and an equation for the boundary as well, 
resulting in increased work. It would be interesting in future work to compare results 
of the two methods using similar numerical techniques. 

This research was supported by the Technion V.P.R. Fund - K. &M. Bank 
Mathematics Research Fund, and by the Fund for the Promotion of Research a t  the 
Technion. 
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